Grasping time does not influence the early adherence of aperture shaping to Weber's law
نویسندگان
چکیده
The "just noticeable difference" (JND) represents the minimum amount by which a stimulus must change to produce a noticeable variation in one's perceptual experience (i.e., Weber's law). Recent work has shown that within-participant standard deviations of grip aperture (i.e., JNDs) increase linearly with increasing object size during the early, but not the late, stages of goal-directed grasping. A visually based explanation for this finding is that the early and late stages of grasping are respectively mediated by relative and absolute visual information and therefore render a time-dependent adherence to Weber's law. Alternatively, a motor-based explanation contends that the larger aperture shaping impulses required for larger objects gives rise to a stochastic increase in the variability of motor output (i.e., impulse-variability hypothesis). To test the second explanation, we had participants grasp differently sized objects in grasping time criteria of 400 and 800 ms. Thus, the 400 ms condition required larger aperture shaping impulses than the 800 ms condition. In line with previous work, JNDs during early aperture shaping (i.e., at the time of peak aperture acceleration and peak aperture velocity) for both the 400 and 800 ms conditions scaled linearly with object size, whereas JNDs later in the response (i.e., at the time of peak grip aperture) did not. Moreover, the 400 and 800 ms conditions produced comparable slopes relating JNDs to object size. In other words, larger aperture shaping impulses did not give rise to a stochastic increase in aperture variability at each object size. As such, the theoretical tenets of the impulse-variability hypothesis do not provide a viable framework for the time-dependent scaling of JNDs to object size. Instead, we propose that a dynamic interplay between relative and absolute visual information gives rise to grasp trajectories that exhibit an early adherence and late violation to Weber's law.
منابع مشابه
Visually and memory-guided grasping: Aperture shaping exhibits a time-dependent scaling to Weber’s law
The 'just noticeable difference' (JND) represents the minimum amount by which a stimulus must change to produce a noticeable variation in one's perceptual experience and is related to initial stimulus magnitude (i.e., Weber's law). The goal of the present study was to determine whether aperture shaping for visually derived and memory-guided grasping elicit a temporally dependent or temporally i...
متن کاملBiomechanical factors may explain why grasping violates Weber’s law
For grasping, Ganel, Chajut, and Algom (2008) demonstrated that the variability of the maximum grip aperture (MGA) does not increase with the size of the target object. This seems to violate Weber's law, a fundamental law of psychophysics. They concluded that the visual representations guiding grasping are distinct from representations used for perceptual judgments. Weber's law is however only ...
متن کاملInferences about time course of Weber’s Law violate statistical principles
Recently, Holmes et al. (2011b) suggested that grasping is only subject to Weber's Law at early but not late points of a grasping movement. They therefore conclude that distinct visual computations and information may guide early and late portions of grasping. Here, we argue that their results can be explained by an interesting statistical artifact, and cannot be considered indicative of the pr...
متن کاملVisuomotor Resolution in Telerobotic Grasping with Transmission Delays
Weber’s law is among the basic psychophysical laws of human perception. It determines that human sensitivity to change along a physical dimension, the just noticeable difference (JND), is linearly related to stimulus intensity. Conversely, in direct (natural), visually guided grasping, Weber’s law is violated and the JND does not depend on stimulus intensity. The current work examines adherence...
متن کاملGrasping Weber's law
will obey Weber’s law, but that the perceived locations of its endpoints will not. The judgments underlying this inconsistency coexist in our brain without being noticed, but they are revealed when a task that mainly relies on the locations of a line’s endpoints is compared with one that mainly relies on the length of the same line [3,4]. This distinction between position and size is essential ...
متن کامل